Explicit coproduct formulas for quantum group of the type G2

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit spectral formulas for scaling quantum graphs.

We present an exact analytical solution of the spectral problem of quasi-one-dimensional scaling quantum graphs. Strongly stochastic in the classical limit, these systems are frequently employed as models of quantum chaos. We show that despite their classical stochasticity all scaling quantum graphs are explicitly solvable in the form E(n) =f (n) , where n is the sequence number of the energy l...

متن کامل

Chern Class Formulas for G2 Schubert Loci

We define degeneracy loci for vector bundles with structure group G2, and give formulas for their cohomology (or Chow) classes in terms of the Chern classes of the bundles involved. When the base is a point, such formulas are part of the theory for rational homogeneous spaces developed by Bernstein–Gelfand–Gelfand and Demazure. This has been extended to the setting of general algebraic geometry...

متن کامل

→ 2 γ and the Twisted Coproduct of the Poincaré Group

Yang’s theorem forbids the process Z → 2γ in any Poincaré invariant theory if photons are bosons and their two-particle states transform under the Poincaré group in the standard way (under the standard coproduct of the Poincaré group). This is an important result as it does not depend on the assumptions of quantum field theory. Recent work on noncommutative geometry requires deforming the above...

متن کامل

Explicit Formulas for the Modular Equation

We determine a linear time algorithm for calculating the modular equation ΦN (X, J) for N = p1p2, where p1 and p2 are distinct primes. We provide N = 10 as an example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2018

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2016.12.004